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Abstract. We investigate the violation of time reversal invariance in the decay of the free neutron in the
framework of the minimal supersymmetric standard model (MSSM). The coefficient of the triple product
of the neutron spin and the momenta of electron and neutrino, the so-called D parameter, is computed at
one-loop order including all diagrams. We find that D is mainly sensitive to the trilinear A coupling in the
squark sector and to the phase of the coefficient µ which mixes the two Higgs superfields. The maximal
MSSM contribution using parameters still allowed by experiment is however at D ≈ 10−7, while QED final
state interactions give a value of Dfsi = −2.3 ·10−5. Explicit expressions for all relevant diagrams are given
in an appendix.

1 Introduction

The existence of complex parameters in the Lagrangian
can lead to a violation of time reversal symmetry. In the
standard model the phase of the CKM matrix is the only
phase which cannot be eliminated by a field redefinition.
In the MSSM there are additional parameters which in
general cannot be made real:
(1) the coefficient of the term bilinear in the Higgs super-
fields, µ;
(2) two of the three gaugino masses m̃i, i = 1, 2;
(3) terms mixing left- and right-handed sfermions Af .

The violation of (naive) T symmetry can be tested
using an observable which is odd under applying the T
symmetry operator. For example an odd combination of
spins and momenta fulfills this condition. In this paper we
investigate the triple product

�σn

σn
· (�pe × �pν̄) (1)

of the spin of the neutron and the momenta of electron
and electron antineutrino in the decay of free neutrons.
The coefficient of this expression in the decay distribution

dΓ

dEed cos θeν̄
= Ge(Ee)

{
1 + D

�σn

σn

�pe × �pν̄

EeEν̄
+ . . .

}
, (2)

where Ge is the tree-level expression, is called the D pa-
rameter. It offers a distinct possibility to search for T
symmetry violation in neutron decay, besides the electric
dipole moment of the neutron. An experimental effort is

currently underway at the ILL Grenoble to improve the
measurement of, or bound on, D. A complete calculation
of D in the MSSM therefore seems timely. To the best of
our knowledge, only the gluino loop contribution to D has
previously been calculated [1].

In this paper we follow the conventions of Rosiek [2];
that reference also contains expressions for all relevant
Feynman rules. A brief summary of the (somewhat un-
usual) notation is given in Appendix A.

2 D-parameter

2.1 Standard model

As remarked earlier, the only T -violating parameter in
the standard model (SM) is the phase in the Kobayashi–
Maskawa matrix. It can lead to violation of T (or CP )
symmetry only in processes involving all three generations
of quarks. Therefore it can contribute to the D-parameter
only starting at the two-loop level. As a result, the truly
T symmetry violating contribution to D is very small in
the SM [3],

DSM ≤ 10−12. (3)

Experimentally a complete time reversal, which would
consist of motion reversal and exchange of the initial and
final states, is unfortunately not possible in neutron de-
cay. Instead, D is odd under so-called naive time rever-
sal, where only the directions of all spin and momentum
three-vectors are reversed, without exchanging initial and
final state [4]. While genuine T invariance can only be vi-
olated if some parameters in the fundamental Lagrangian
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contain non-trivial complex phases, naive time reversal
invariance can be violated whenever the relevant matrix
element has a nonvanishing imaginary part. This differ-
ence is significant, since an imaginary part in the matrix
element, a so-called absorptive phase, can also originate
from loop corrections which respect genuine T invariance.
In the present case these are due to QED final state inter-
actions between the proton and the electron. Note that a
loop diagram gives an absorptive phase only if the parti-
cles in the loop can be on-shell; this leads to an additional
phase space suppression factor of order Ee/mn, where mn

is the neutron mass and Ee the energy of the electron in
the neutron rest frame. The total contribution from the
final state interactions is therefore quite small [5],

|Dfsi| ≤ 2.3 · 10−5; (4)

the bound is saturated at the kinematic maximum of Ee.
“New physics” contributions to D that are much smaller
than this value will be very difficult to extract even for an
arbitrarily small experimental error, since the prediction
(4) has some theoretical uncertainties, e.g. due to higher
order corrections and proton form factor effects. Finally,
the current experimental sensitivity [6] is still well below
the prediction (4),

Dexp = (−0.6 ± 1.0) · 10−3. (5)

However, efforts are underway to improve the sensitivity
by nearly an order of magnitude [4].

2.2 MSSM

Let us now turn to the calculation of the D parameter in
the MSSM. We have extended the analysis of [1] by includ-
ing all possible diagrams at one-loop order. Four different
types of diagrams can contribute to neutron decay:
(1) vertex correction at the W–quark vertex;
(2) vertex correction at the W–lepton vertex;
(3) vertex corrections where the exchanged W boson is
replaced by a charged Higgs boson;
(4) box diagrams.

The corrections to the W–lepton vertex give a contri-
bution to D that is suppressed by a factor me

mp
� 5·10−4, so

these diagrams can safely be neglected compared to the
corrections to the W–quark vertex. The diagrams with
Higgs boson exchange do not contribute at all to the D-
parameter, since they do not contain sufficiently many γ
matrices to give rise to a spin correlation. We therefore
only need to consider corrections to the W–quark vertex
as well as box diagrams.

Since we are computing a contribution to the neutron
decay distribution which has non-trivial dependence on
the final state momenta, see (2), we cannot completely
neglect external momenta when evaluating the loop inte-
grals, even though these momenta are much smaller than
the masses of the superparticles in the loop. However, af-
ter introducing Feynman parameters and shifting the loop

integration variable k in such a way that the terms lin-
ear in k are eliminated from the denominator, all terms
of order mn or me can be neglected in the denominator;
in other words, external momenta can be ignored in the
loop integrals after the shift of the loop momentum. The
three- and four-point functions that appear in our calcu-
lation can therefore easily be reduced to combinations of
two-point functions, as described in Appendix C.

The coefficients in front of the loop integrals contain
three different kinds of suppression factors. The Dirac al-
gebra can introduce factors of the nucleon mass, rather
than the mass of a fermionic superparticle. Moreover, cer-
tain chargino and neutralino couplings contain Yukawa
couplings to first generation fermions. Finally, a term may
require mixing between SU(2) doublet and singlet first
generation sfermions, which is again proportional to a first
generation Yukawa coupling. Numerically these three sup-
pression factors are of comparable size, so that a simple
counting of these factors is sufficient to isolate the leading
terms.

Let us illustrate these remarks by analyzing the κ̃0–
ũ–d̃ loop correction to the Wud vertex; see Fig. 10 in Ap-
pendix B. The corresponding contribution to the D pa-
rameter is given in (B.5). We first note that the three-point
function Cµν is O(1), whereas the functions C0, CD2 and
CD3, which are defined in Appendix C, are O(1/m2

SUSY),
where mSUSY ∼ 0.1 to 1 TeV is a typical superparticle
mass scale. Let r ≡ mn/mSUSY, and let Yu and Yd be the
u and d quark Yukawa couplings, respectively. From (B.6)
for the relevant couplings one can then derive the follow-
ing behavior for the various terms listed in (B.5), which
we label here by the relevant product of couplings:

A1D1E1 ∼ O(YuYd); A1C1E1 ∼ O(rYu);
B1D1E1 ∼ O(rYd); B1C1E1 ∼ O(r2). (6)

We note that each term has two suppression factors. This
is true for all other loop corrections as well, as can be seen
from the results given in Appendix B. Terms with an even
larger number of suppression factors have been omitted.

It should be noted that the terms containing powers
of the suppression factor r have been obtained by replac-
ing the kinematic u and d quark masses by the masses
of the proton and neutron, respectively; this simple ap-
proximation goes under the name of “naive dimensional
analysis” [7]. It seems reasonable to take some sort of
long-distance quark mass here, although the use of a con-
stituent quark mass ∼ mn/3 could also be defended. Since
the first generation Yukawa couplings are1 O(10−4) one
might think that Yu,d give a much more severe suppres-
sion than r. However, this need not be the case. Only
the imaginary parts of the products of couplings are rele-
vant. Terms with explicit factors of Yukawa couplings can
acquire non-trivial phases either from gaugino–higgsino
mixing in the chargino–neutralino sector, or from mixing
between SU(2) doublet and singlet sfermions, whereas (in
the absence of sflavor mixing) terms without Yukawa cou-
plings are generally not sensitive to phases in the sfermion

1 These are short-distance couplings, to be taken at a mo-
mentum scale of order mSUSY



M. Drees, M. Rauch: Complete one-loop calculation of the T -violating D-parameter 575

sector. Note also that Yd ∝ tanβ for tanβ � 1. These con-
siderations imply that contributions that are suppressed
by Yukawa couplings are in general not smaller than those
that are suppressed by powers of r. Finally, the box dia-
grams receive an additional (modest) suppression factor of
order (mW /mSUSY)2. The same factor should also be mul-
tiplied to all terms that do not contain factors of r, while
terms with only one power of r receive an additional sup-
pression of order mW /mSUSY. The reason is that heavy
superparticles must decouple quadratically. Such factors
result from mixing in the κ̃ sector, and/or from mixing
between SU(2) doublet and singlet squarks. [The latter
is also suppressed by the relevant Yukawa coupling, but
this is already included in (6).] However, for reasonable
superparticle masses these additional suppression factors
are much less important than the factors listed in (6).

2.3 Restrictions on the parameter space

In order to make a useful analysis of the D parameter it
is important to know which parts of the parameter space
of the MSSM are still experimentally allowed. Especially
relevant are experiments which test T symmetry violation
in other observables, in particular the electric dipole mo-
ments (EDMs) of electron and neutron, de and dn. Current
experimental bounds on these quantities [6] impose strong
constraints on parameter space. For superparticle masses
of the order of (a few) hundred GeV, many combinations
of phases are excluded, although in some cases there is a
possibility that one can have small EDMs while retaining
large phases [8]. For our analysis we have used the for-
mulae for the EDMs given in [8], and checked for each
parameter point that it does not violate the experimental
limits

|dn| ≤ 0.63 · 10−25 e cm
(CL = 90%),

−0.005 · 10−26 e cm ≤ de ≤ 0.143 · 10−26 e cm
(CL = 68%). (7)

Of course, limits on superparticle masses from null results
of experimental searches for these particles at high energy
colliders also have to be respected [6].

3 Numerical analysis

3.1 Choice of parameters

We wish to find the maximal supersymmetric contribu-
tion to D in the framework of the R-parity conserving
MSSM. As is well known, the parameter space of the gen-
eral MSSM is vast, so some simplifying assumptions are
necessary. In our analysis we have assumed that no flavor
mixing exists in the sfermion sector. This means that the
ff̃ κ̃0 and ff̃ g̃ vertices are diagonal in flavor space. One
can then easily see from the diagrams given in Appendix B
that CKM mixing between quarks is not relevant, i.e. all

sfermions in the loop must be of the first generation. On
the other hand, our discussion of (6) showed that it is of
crucial importance to include L–R mixing even for first
generation squarks.

Ignoring all flavor mixing between sfermions may
sound like a rather severe restriction on the parameter
space. However, mixing between first generation sfermions
and those of the second or third generation is strongly
constrained by experimental limits on various FCNC pro-
cesses [9]. We have checked that including flavor off-
diagonal LR and RL entries of the experimentally allowed
magnitude in the squark mass matrices does not increase
the maximal contribution to D once the constraints (7)
on the EDMs have been imposed. Generally speaking, fla-
vor mixing should not be very important here, since all
external fermions belong to the same (first) generation.

In the absence of flavor mixing between sfermions our
results are independent of the soft breaking parameters
describing the second and third generation sfermion mass
matrices. The same is true for the soft breaking param-
eters of the tree-level Higgs potential. We have initially
chosen a rather small value for the ratio of vacuum expec-
tation values (VEVs) tanβ,

tanβ = 3. (8)

The reason is that supersymmetric contributions to the
EDMs increase with tanβ [8]. Choosing a small value for
this parameter therefore minimizes the impact of the ex-
perimental constraints (7) on the allowed values of the
remaining parameters.

Supersymmetry is a decoupling theory, which means
that in the limit where the masses of the supersymmetric
particles go to infinity, the predictions for all observables
approach their SM values. We therefore consider a rela-
tively light spectrum of superparticles, described by the
following values of the relevant soft breaking parameters:

m2
L = 35 · 103 GeV2, m2

R = 50 · 103 GeV2, (9a)
m2

Q = 150 · 103 GeV2,

m2
U = m2

D = 200 · 103 GeV2, (9b)
|µ| = 450 GeV, (9c)

|m1| = 200 GeV, |m2| = 400 GeV,

|m3| = 800 GeV. (9d)

Here mL and mR are the soft breaking masses for SU(2)
doublet and singlet sleptons, mQ is the soft breaking mass
for SU(2) doublet squarks, and mU and mD are the soft
breaking masses for SU(2) singlet squarks with charge 2/3
and −1/3, respectively; recall that we only need to specify
these masses for the first generation. As mentioned earlier,
µ is the coefficient of the term coupling the two Higgs su-
perfields in the superpotential. Finally, mi are the soft
breaking gaugino masses; the ratios of these masses are
similar to that expected in grand unified models with uni-
versal gaugino mass at the unification scale. The choices
(9) lead to a superparticle spectrum that respects all ex-
perimental limits from searches for superparticles, and al-
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lows large CP -violating phases to occur through the can-
cellation mechanism [8]. We will later comment on the
effect of lowering the overall SUSY mass scale from the
choice of (9).

The remaining parameters are sampled randomly, tak-
ing a flat distribution within specified limits. The trilinear
couplings2

|Au| ≡ |Ad|, |Al| ∈ [0, 0.1] GeV (10)

were chosen so that internal cancellations in the EDMs
are possible but the sfermions do not acquire VEVs, which
would be the case for too large values. For simplicity we
took the same value for Ad and Au; Al is allowed to dif-
fer, in order to facilitate independent cancellations in the
supersymmetric contributions to dn and de. Finally the
phases of the gaugino masses, µ, and of the trilinear cou-
plings were varied independently (except Ad ≡ Au) over
the entire possible range,

φm1 , φm2 , φAu
≡ φAd

, φAl
, φµ ∈ [0, 2π[ . (11)

Note that by an appropriate field redefinition the phase of
the gluino mass can always be set to zero without loss of
generality.

3.2 Numerical results

In this section we display the results of our numerical anal-
ysis. Note that only about 20 000 out of 1010 tested sets
of parameters satisfied the constraints (7). This illustrates
that the EDMs do indeed severely constrain the allowed
combinations of non-trivial complex phases in the MSSM
Lagrangian.

In Fig. 1 we plot the dependence of the supersymmet-
ric contribution DSUSY to the D parameter on the phase
φµ. It is easy to see that DSUSY depends strongly on this
phase. There is however also a large variability at fixed
φµ, which shows that DSUSY also depends significantly on
the other parameters.

Before investigating this closer it is useful to identify
the diagram which gives the leading supersymmetric con-
tribution to D. Inspection of the contributing diagrams
in Appendix B shows that only one of them, the quark
vertex correction shown in Fig. 11, involves the strong in-
teractions. One might have thought that the presence of
the gluino in this diagram, which is significantly heavier
than the electroweak gauginos, would partially compen-
sate this enhancement. However, this would only be true
if the gluino was significantly heavier than the squarks in
the loop; such an ordering of masses is not allowed in the
MSSM, since it would lead to tachyonic squark masses at
energy scales just above the gluino mass [10]. Indeed we
find numerically that the gluino vertex diagram, which

2 Recall that we are using the convention of [2], where the
ordinary Yukawa couplings are explicitly included in the A-
parameters. In case of first generation quarks these couplings
are roughly of order 10−4; this explains the small values of the
A-parameters in (10)

Fig. 1. Supersymmetric contribution to the D parameter de-
pending on the phase φµ

Fig. 2. The contribution from the leading gluino diagram to
DSUSY

is the only diagram considered in [1], gives the leading
contribution to DSUSY. All other diagrams are suppressed
by at least one order of magnitude. This is in spite of
the fact that the only phases contributing to the gluino
loop diagram come from squark mixing, whereas the elec-
troweak loop corrections are also sensitive to phases from
electroweak gaugino–higgsino mixing3. On the other hand,
the relative importance of the other diagrams is increased
by the fact that they all add destructively to the gluino
loop diagram, i.e. tend to reduce |DSUSY|. As a result, the
pure gluino loop contribution to DSUSY, shown in Fig. 2,
is somewhat larger in absolute size than the total one-loop
contribution shown in Fig. 1.

3 Partly for this reason, the chargino and gluino loop contri-
butions to dn can be of similar size. Note, however, that in the
case of the D parameter the chargino and gluino loop contribu-
tions have a quite different structure, i.e. there is no chargino
diagram with two squark propagators
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a b

c d

e

Fig. 3a–e. Electroweak contributions to DSUSY. The numbers in parentheses correspond to the labeling of diagrams and their
contributions in Appendix B; e.g. DSUSY(1) refers to the diagram shown in Fig. 10, whose contribution is given by (B.5)

The contributions of the other five diagrams are shown
in Fig. 3. For better readability the y-axis was scaled down
by a factor of 10. The numbers in brackets in the label of
the y-axis denote the diagram whose contribution is shown
in the corresponding plot.

We see that the first of the three electroweak vertex
corrections, with a neutralino and two squarks in the loop,
gives significantly larger contributions than diagrams 3
and 4, which have one squark, one chargino and one neu-
tralino in the loop. This can be understood from the ob-
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servation that the Wκ̃±
i κ̃0

j vertex only couples two SU(2)
gauginos (winos) or two higgsinos together; this suppresses
possible contributions involving the phase φ1 associated
with the U(1)Y gaugino (bino). Moreover, the coupling
structure in diagrams 3 and 4 is such that some gaugino–
higgsino mixing is required, whereas diagram 1 gets fi-
nite contributions even without this mixing. This sup-
presses the contributions of diagrams 3 and 4 by a fac-
tor O(mW /mSUSY) relative to that of diagram 1. Finally,
for the given choice of sparticle masses, the box diagrams
5 and 6 give contributions which are about two orders
of magnitude smaller than that of diagrams 3 and 4. We
remarked earlier that the contribution from box diagrams
are suppressed by (mW /mSUSY)2 � 1/20 for our set of pa-
rameters. Moreover, the additional integration over Feyn-
man parameters required in the D-functions appearing
in the box contributions gives another suppression fac-
tor ∼ 1/5 compared to the C-functions appearing in the
vertex corrections.

Let us now return to the question which other param-
eters influence the size of DSUSY. As the gluino diagram
is independent of the phases φm1 and φm2 these cannot
play significant roles. If we now restrict φµ to a small in-
terval around π (φµ = π ± 0.01π), in accordance with
the limits on the EDMs, it becomes clear that Au is the
second parameter which determines DSUSY for given spar-
ticle masses. |Au| largely determines the amount of L–R
mixing between up-type squarks, since in this case the
contribution ∝ |µ| is suppressed by a factor cotβ; many
of the terms ∝ Yu originate from this mixing. Since µ is
almost real, |DSUSY| becomes very small as |Au| → 0, as
shown in Fig. 4. Moreover, for (almost) real µ, the phase
of Au (= Ad for our choice of parameters) determines the
CP -violating phases in the squark mixing matrices. This
leads us to expect that |DSUSY| will be maximal if φAu

is
∼ π

2 or ∼ 3π
2 . This is confirmed by Fig. 5. (|DSUSY| can be

small even for these choices of φAu since |Au| is still varied
in Fig. 5; of course, the value of φAu becomes irrelevant as
|Au| → 0.)
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We have also investigated the influence of tanβ on
DSUSY. To that end the parameter point

φm2 = 0.8135π, φm1 = 0.09748π, φµ = 1.4175π,

|Au| = 0.02279 GeV, φAu = 0.2972π (12)

was chosen arbitrarily from the set of points that are al-
lowed for tanβ = 3. The tanβ dependence of DSUSY is
shown in Fig. 6. The almost linear increase results from
the increase of the d-quark Yukawa coupling, and hence of
d̃L–d̃R mixing, which is proportional to 1/ cos β � tanβ
for tan2 β � 1. Here we have neglected the restrictions
from the EDMs; for the set of parameters described by
(9), (10) and (12), these impose the bound tanβ < 3.5.
On the other hand, since several contributions to dn and de

grow ∝ tanβ, cancellations can also work at large tanβ, if
some of the other parameters, e.g. the phases, are changed
slightly, without significantly modifying the prediction for
DSUSY. However, since the separate contributions to de

and dn grow with increasing tanβ, increasingly precise
cancellations become necessary to satisfy the experimen-
tal constraints (7).
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Both of these observations are confirmed by Fig. 7,
which shows DSUSY for the same parameters as in Fig. 1,
except that now tanβ = 30. We see that the overall scale
of DSUSY is one order of magnitude larger than in Fig. 1,
as expected from the linear growth shown in Fig. 6. The
small number of surviving points illustrates the difficulty
of getting both |de| and |dn| sufficiently small through del-
icate cancellations. In particular, the de constraint now ex-
cludes some region of φµ altogether4. Recall, however, that
the (s)leptonic corrections to DSUSY are suppressed by a
factor me/mp, and are thus negligible. We can therefore
vary the sleptonic soft breaking masses mL, mR without
significantly changing the prediction for DSUSY. In this
case the entire range of φµ becomes allowed again. We
therefore conclude that the maximal allowed |DSUSY| in-
creases essentially linearly with tan β. However, requiring
the bottom Yukawa coupling to be less than that of the
top quark, or at least to be sufficiently small to not have
a Landau pole below the scale of grand unification, leads
to the upper bound tanβ <∼60. If the dimensionful param-
eters in the squark, gaugino and higgsino sectors are as
in (9), the maximal value of |DSUSY| is therefore around
5 · 10−8.

Our choice (9) for the relevant soft breaking masses
means that first generation squarks as well as most
charginos and neutralinos have masses around 400 to
500 GeV. Direct searches for sparticles allow us to lower
these masses by a factor of 2 to 3. We expect that for fixed
phases D scales quadratically with the overall superparti-
cle mass scale, D ∝ 1/m2

SUSY.
This is borne out by Fig. 8, which shows DSUSY for

tanβ = 3; the other parameters are as in (9) and (12),
except that all quantities with mass dimension are mul-
tiplied with the dimensionless factor c, which is varied

4 Recall that φµ measures the relative phase between µ and
the gluino mass m3. For the choice (9) of dimensional param-
eters the de constraint limits the relative phase between µ and
the SU(2) gaugino mass m2 to narrow bands around 0 and π
even for small tan β, but this is not visible after scanning over
φm2
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Fig. 8. DSUSY for tan β = 3, where the other parameters are
as in (9) and (12), except that all mass parameters have been
multiplied with the dimensionless scaling factor c

between 0.4 and 2. Similar to the case of Fig. 6, values of
c significantly different from unity are disallowed by the
constraints on de and/or dn, but again this can be fixed
by small variations of the phases. Since DSUSY and the
dipole moments show the same c−2 dependence on c, in-
creasingly delicate cancellations are required to satisfy the
constraints (7) as c is reduced. The lower bound c ≥ 0.44
is in our case set by the lower bound on the mass of the
lightest selectron, mẽ ≥ 95 GeV, from LEP searches [6].

By simultaneously reducing the overall SUSY mass
scale and increasing tanβ one might therefore in prin-
ciple be able to reach values of |DSUSY| slightly above
10−7. However, the fine-tuning required to satisfy the lim-
its on both de and dn then becomes very severe indeed;
less than one parameter set in 109 will survive5. Moreover,
one would have to choose soft breaking masses for τ̃ slep-
tons and b̃ squarks that are much larger than those for the
corresponding first generation sfermions. Otherwise L–R
mixing, which grows ∝ |µ| tanβ, would make the lighter
τ̃ and b̃ mass eigenstates much too light, or even tachy-
onic. Recall that even |DSUSY| � 10−7 is still two orders of
magnitude below the contribution (4) from the final state
interactions.

Finally, we have checked for a few cases that changing
the ratios of soft breaking parameters from the choice of
(9) does not increase the maximal allowed value of DSUSY
significantly. This is not surprising, since the overall scale
of DSUSY is set by the heaviest superparticle that oc-
curs in a given loop diagram, whereas the lower bound
on the overall mass scale is essentially set by the lightest
(charged) superparticle. |DSUSY| will therefore be maxi-
mal if the parameters are chosen such that the mass split-
ting between superparticles is relatively small, which is
true for the parameters of (9).

5 Since de and dn have to be fine-tuned independently, the
overall severity of fine-tuning scales like c−4 · tan2 β
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4 Conclusions and outlook

In this paper we have analyzed T symmetry violation in
the beta decay of free neutrons via the D parameter. We
have extended the analysis of [1] by computing all dia-
grams that occur at one-loop order. We have performed
a full scan of the allowed phases and the magnitude of
the A parameters describing mixing between SU(2) sin-
glet and doublet squarks, subject only to the experimental
constraints on the electric dipole moments of the electron
and, in particular, the neutron.

We find that the gluino loop correction to the Wud
vertex indeed gives the leading supersymmetric contribu-
tion to D. The phase of µ, which has been neglected in
[1], crucially influences the size of DSUSY. Moreover, allow-
ing for cancellations between various contributions to the
EDMs permits larger values for the relevant phases, which
increases |DSUSY|. We nevertheless find that the maximal
contribution to |D| from the R-parity conserving MSSM
is at least two orders of magnitude smaller than the con-
tribution (4) from electromagnetic final state interactions.
This means that even greatly improved experimental up-
per bounds on |D| will not lead to new constraints on this
model. On the other hand, a measurement of D which
differs significantly from the prediction (4) would rule out
the R-parity conserving MSSM along with the SM. Larger
contributions might be possible in the R-parity violating
version of the MSSM. Note that R-parity violation only
through trilinear terms in the superpotential does not con-
tribute to the EDMs at one-loop level [11], whereas e.g.
baryon-number violating (λ′′) couplings can contribute to
D at the one-loop level.

Analogous triple products can also be defined for de-
cays involving particles heavier than the neutron. Decays
of heavier baryons, e.g. Λ or Λb, can be treated using the
expressions given in Appendix B, since here the external
momenta are still much smaller than mSUSY. In these
cases the supersymmetric contributions are expected to
be larger by several orders of magnitude than in case of
neutron decay, since Yd would be replaced by Ys or even
Yb; in addition, the constraints on CP -violating phases of
soft breaking parameters in the second and third genera-
tion are much weaker than for the first generation. Exper-
imental measurements will probably be difficult in these
cases, however.

Even larger supersymmetric contributions can be ex-
pected for the analogous asymmetry in top quark decay.
Since the top Yukawa coupling is O(1), electroweak correc-
tions might well be comparable to SUSY QCD corrections
[1] in this case. Moreover, the mass ratio mt/mSUSY is also
O(1). This again increases the level of the expected correc-
tions; it also means, however, that the expansion for small
external momenta used in our calculation is no longer ad-
equate. Note also that the spin of the top quark cannot
be measured directly; nevertheless the D-parameter in top
decays does contribute to measurable T -odd asymmetries
[12]. The final state interactions for such decays have al-
ready been found to have approximately the same size as
for neutron decay [13]. A full calculation of supersymmet-
ric contributions to CP -violation in top decay, including

electroweak contributions, might therefore prove reward-
ing.
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Appendix

A Notation

For the benefit of the reader we have summarized in this
appendix the conventions used in this paper. A complete
description including all expressions for the Feynman rules
can be found in [2].

There are two charginos κ̃±
i , i = 1, 2, whose mass ma-

trix is diagonalized by two unitary matrices Z+ and Z−:

(Z−)T
(

m2
ev2√
2sW

ev1√
2sW

µ

)
Z+ = diag(mκ̃±

1
, mκ̃±

2
). (A.1)

This equation does not specify the two matrices Z+ and
Z− uniquely. This can be used to choose both masses pos-
itive and sorted in ascending order.

Similarly, the neutralinos are denoted by κ̃0
i , i = 1,

. . . , 4, and the neutralino mass matrix is diagonalized by
a unitary matrix ZN such that

(ZN )T




m1 0 −ev1
2cW

ev2
2cW

0 m2
ev1
2sW

−ev2
2sW−ev1

2cW

ev1
2sW

0 −µ
ev2
2cW

−ev2
2sW

−µ 0


ZN

= diag(mκ̃0
1
, . . . , mκ̃0

4
). (A.2)

As noted in the text, the mass parameter of the SU(3)
gauginos can be taken as real. Therefore the eight gluinos
all have a mass m3.

Finally, the sfermion mass matrix can be written com-
pactly for all four different types of sfermions as

M2
f̃

= (A.3)



m2
f̃L

T + m2
f +

e2
(

v2
1−v2

2

)(
T3

f −Qf s2W

)
4s2Wc2

W

−mf

(
κµ∗ +

Af
Y

)

−mf

(
κµ +

A∗
f

Y

)
m2

f̃R
+ m2

f + Qf

e2
(

v2
1−v2

2

)
4c2

W


 .

Here, κ = cot β for up-type squarks and κ = tanβ for
down-type squarks and charged sleptons. mf̃L

and mf̃R

denote the mass parameters and Af the coefficient of the
trilinear terms from the soft SUSY-breaking terms in the
Lagrangian, and Y is the respective Yukawa coupling. Qf

is the electromagnetic charge and T 3
f the quantum number

of the third component of the isospin operator. As there
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Fig. 9. Tree-level diagram describing neutron decay

is no SU(2) singlet sneutrino only the upper left element
in the matrix of (A.3) occurs for the sneutrinos.

These mass matrices can be diagonalized with a uni-
tary matrix each, yielding

ZT
ν M2

ν̃Z∗
ν = diag

(
m2

ν̃1
, . . . , m2

ν̃3

)
,

Z†
LM2

ẽZL = diag
(
m2

ẽ1
, . . . , m2

ẽ6

)
,

ZT
U M2

ũZ∗
U = diag

(
m2

ũ1
, . . . , m2

ũ6

)
,

Z†
DM2

d̃
ZD = diag

(
m2

d̃1
, . . . , m2

d̃6

)
. (A.4)

B Feynman diagrams

Altogether six Feynman diagrams were computed. The
vertex corrections at the W–lepton vertex are, as already
mentioned, suppressed by a factor of me

mp
� 5·10−4 and can

therefore be neglected. We first give the tree-level expres-
sion for the differential decay distribution, since it enters
the definition of the D-parameter:

D =
dΓi

dEed cos θeν̄/(
dΓtree

dEed cos θeν̄
· �sn ·

(
�pe × �pν̄

EeEν̄

))
. (B.1)

All necessary traces have been computed with the help of
FORM [14]; in many cases the results have been checked
using manual calculations.

Tree-level result

We have

dΓtree

dEed cos θeν̄
=

E2
ν̄

√
E2

e − m2
e

8π3m4
W (mn − Ee − Eν̄)

×EemnU2V 2, (B.2)

with
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Fig. 10. Vertex correction with neutralino-ũ-d̃ loop

U = − e√
2 sin θW

CIJ , (B.3)

V = − e√
2 sin θW

δKL. (B.4)

Here e is the QED coupling constant, θW the weak mix-
ing angle, and C the quark flavor mixing matrix. In our
numerical calculation we have ignored all flavor mixing.

Diagram 1: Neutralino–ũ–d̃ vertex correction

We have
dΓ1

dEed cos θeν̄

=
dΓtree

dEed cos θeν̄
· �sn ·

(
�pe × �pν̄

EeEν̄

)
1

4mnU2V 2

Re
(
UV 2

)
16π2

×
[
(−2Im (A1D1E1) mp) Cµν(0, 0, mũi , md̃j

, mκ̃0
l
)δµν

+ (4Im (A1C1E1) (B.5)
+4Im (B1D1E1)) mκ̃0

l
m2

nCD2(0, 0, mκ̃0
l
, mũi , md̃j

)

+4Im (B1C1E1) m3
n

(
CD2(0, 0, mκ̃0

l
, mũi , md̃j

)

− CD3(0, 0, mκ̃0
l
, mũi

, md̃j
)
)]

+ . . .

with

A1 =
2
√

2e

3 cos θW
Z

(I+3)i
U Z1l

N − Y I
u Z4l

N ZIi
U , (B.6a)

B1 = − e√
2 sin θW cos θW

×ZIi
U

(
1
3
Z1l∗

N sin θW + Z2l∗
N cos θW

)

−Y I
u Z4l∗

N Z
(I+3)i
U , (B.6b)

C1 = − e√
2 sin θW cos θW

(B.6c)

×ZJj
D

(
1
3
Z1l

N sin θW − Z2l
N cos θW

)
+ Y J

d Z
(J+3)j
D Z3l

N ,
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Fig. 11. Vertex correction with gluino−ũ-d̃ loop

D1 =
−√

2e

3 cos θW
Z

(J+3)j
D Z1l∗

N + Y J
d ZJj

D Z3l∗
N , (B6.d)

E1 = − e√
2 sin θW

ZJj∗
D ZIi∗

U CIJ . (B6.e)

The dots (. . . ) denote additional terms in the decay distri-
bution that do not contribute to D. Equations (B.5) and
(B.6), as well as all subsequent expressions, are given in
the notation of Rosiek [2].

Diagram 2: Gluino-ũ-d̃ vertex correction

We have

dΓ2

dEed cos θeν̄

=
dΓtree

dEed cos θeν̄
· �sn ·

(
�pe × �pν̄

EeEν̄

)
4
3

1
4mnU2V 2

Re
(
UV 2

)
16π2

×
[
(−2Im (A2D2E2) mp) Cµν(0, 0, mũi

, md̃j
, mg̃l

)δµν

+ (4Im (A2C2E2) (B.7)
+4Im (B2D2E2)) mg̃l

m2
nCD2(0, 0, mg̃l

, mũi , md̃j
)

+4Im (B2C2E2) m3
n

(
CD2(0, 0, mg̃l

, mũi
, md̃j

)

− CD3(0, 0, mg̃l
, mũi , md̃j

)
)]

+ . . .

with

A2 = g3
√

2Z
(I+3)i
U , (B.8a)

B2 = −g3
√

2ZIi
U , (B.8b)

C2 = −g3
√

2ZJj
D , (B.8c)

D2 = g3
√

2Z
(J+3)j
D , (B.8d)

E2 = ZJj∗
D ZIi∗

U CIJ . (B.8e)
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Fig. 12. Vertex correction with neutralino–chargino−d̃ loop

Diagram 3: Neutralino–chargino−d̃ vertex correction

We have

dΓ3

dEed cos θeν̄

dΓtree

dEed cos θeν̄
· �sn ·

(
�pe × �pν̄

EeEν̄

)
1

2mnU2V 2

Re
(
UV 2

)
16π2

×
[
(−Im (A3C3F3) mp) Cµν(0, 0, mκ̃0

l
, mκ̃+

j
, md̃i

)δµν

+2
(
Im (A3D3F3) mpmκ̃+

j
mκ̃0

l
C0(0, 0, md̃i

, mκ̃0
l
, mκ̃+

j
)

+Im (B3D3E3) m3
nCD3(0, 0, md̃i

, mκ̃0
l
, mκ̃+

j
)

+
(
Im (A3D3E3) mκ̃+

j
+ Im (B3D3F3) mκ̃0

l

)
× m2

nCD2(0, 0, md̃i
, mκ̃0

l
, mκ̃+

j
)
)]

+ . . . (B.9)

with

A3 = Y I
u ZMi∗

D Z2j
+ CIM , (B.10a)

B3 = −
(

e

sin θW
ZMi∗

D Z1j∗
− + Y I

d Z
(M+3)i∗
D Z2j∗

−

)
×CIM , (B.10b)

C3 =
e

sin θW

(
Z1j∗

+ Z2l
N − 1√

2
Z2j∗

+ Z4l
N

)
, (B.10c)

D3 =
e

sin θW

(
Z1j

− Z2l∗
N +

1√
2
Z2j

− Z3l∗
N

)
, (B.10d)

E3

=
(

− e√
2 sin θW cos θW

ZJi
D

(
1
3
Z1l

N sin θW − Z2l
N cos θW

)

+ Y J
d Z

(J+3)i
D Z3l

N

)
δJM , (B.10e)

F3 =

(
−√

2e

3 cos θW
Z

(J+3)i
D Z1l∗

N + Y J
d ZJi

D Z3l∗
N

)
δJM . (B.10f)
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Diagram 4: Chargino–neutralino–ũ vertex correction

We have
dΓ4

dEed cos θeν̄

=
dΓtree

dEed cos θeν̄
· �sn ·

(
�pe × �pν̄

EeEν̄

)
1

2mnU2V 2

Re
(
UV 2

)
16π2

×
[
(−Im (A4C4F4) mp) Cµν(0, 0, mκ̃−

l
, mκ̃0

j
, mũi

)δµν

+ 2
(
Im (A4D4F4) mpmκ̃0

j
mκ̃−

l
C0(0, 0, mũi

, mκ̃−
l
, mκ̃0

j
)

+ Im (B4D4E4) m3
nCD3(0, 0, mũi

, mκ̃−
l
, mκ̃0

j
) (B.11)

+
(
Im (A4D4E4) mκ̃0

j
+ Im (B4D4F4) mκ̃−

l

)
× m2

nCD2(0, 0, mũi , mκ̃−
l
, mκ̃0

j
)
)]

+ . . .

with

A4 =

(
2
√

2e

3 cos θW
Z

(I+3)i
U Z1j

N − Y I
u ZIi

U Z4j
N

)
δIM , (B.12a)

B4 =

−
[

e√
2 sin θW cos θW

ZIi
U

(
1
3
Z1j∗

N sin θW + Z2j∗
N cos θW

)

+ Y I
u Z

(I+3)i
U Z4j∗

N

]
δIM , (B.12b)

C4 = − e

sin θW

(
Z1l

− Z2j∗
N +

1√
2
Z2l

− Z3j∗
N

)
, (B.12c)

D4 =
e

sin θW

(
−Z1l∗

+ Z2j
N +

1√
2
Z2l∗

+ Z4j
N

)
, (B.12d)

E4 =
(

− e

sin θW
ZMi∗

U Z1l
+ + Y M

u Z
(M+3)i∗
U Z2l

+

)
×CMJ , (B.12e)

F4 = −Y J
d ZMi∗

U Z2l∗
− CMJ . (B.12f)

Diagram 5: Box with ũ

We have
dΓ5

dEed cos θeν̄

=
dΓtree

dEed cos θeν̄
· �sn ·

(
�pe × �pν̄

EeEν̄

)
m2

W

4mnU2V 2

Re(UV )
16π2

× {(Im (A5D5F5G5) me)
×Dµν(0, 0, 0, mũj , mν̃i , mκ̃0

n
, mκ̃−

l
)δµν

+ 2
[
Im (B5D5E5G5) mpmκ̃−

l
mκ̃0

n

×D0(0, 0, 0, mκ̃−
l
, mũj , mν̃i , mκ̃0

n
)

+
(
Im (B5D5F5G5) mκ̃−

l
m2

n + Im (B5C5E5G5) mκ̃0
n
m2

n

)
×DD1(0, 0, 0, mκ̃−

l
, mũj , mν̃i , mκ̃0

n
) (B.13)

+ Im (B5C5F5G5) m3
nDD2(0, 0, 0, mκ̃−

l
, mũj , mν̃i , mκ̃0

n
)
]}

+ . . .
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Fig. 13. Vertex correction with chargino–neutralino–ũ loop
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Fig. 14. Box diagram with ũ in the loop

with

A5 = −Y K
l ZKi

ν Z2l−
− , (B.14a)

B5 = − e

sin θW
ZKi

ν Z1l∗
+ , (B.14b)

C5 = −
(

e

sin θW
ZMj∗

U Z1l
+ + Y M

u Z
(M+3)j∗
U Z2l

+

)
CMJ ,

(B.14c)

D5 = −Y J
d ZMj∗

U Z2l∗
− CMJ , (B.14d)

E5 =

(
2
√

2e

3 cos θW
Z

(I+3)j
U Z1n

N − Y I
u Z4n

N ZIj
U

)
δMI , (B.14e)

F5 =

[
− e√

2 sin θ cos θW
ZIj

U

(
1
3
Z1n∗

N sin θ + Z2n∗
N cos θ

)

−Y I
u Z4n∗

N Z
(I+3)j
U

]
δMI , (B.14f)
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G5 =
e√

2 sin θ cos θW

×ZLi∗
ν

(
Z1n

N sin θ − Z2n
N cos θ

)
. (B.14g)

Diagram 6: Box with d̃

We have

dΓ6

dEed cos θeν̄

=
dΓtree

dEed cos θeν̄
· �sn ·

(
�pe × �pν̄

EeEν̄

)
m2

W

4mnU2V 2

Re(UV )
16π2

× {(Im (A6D6F6G6) me)
×Dµν(0, 0, 0, md̃j

, mẽi
, mκ̃+

n
, mκ̃0

l
)δµν

+ 2
[
Im (B6D6E6G6) mpmκ̃0

l
mκ̃+

n

×D0(0, 0, 0, mκ̃0
l
, md̃j

, mẽi
, mκ̃+

n
)

+
(
Im (B6D6F6G6) mκ̃0

l
m2

n + Im (B6C6E6G6) mκ̃+
n
m2

n

)
×DD1(0, 0, 0, mκ̃0

l
, md̃j

, mẽi , mκ̃+
n
) (B.15)

+ Im (B6C6F6G6) m3
nDD2(0, 0, 0, mκ̃0

l
, md̃j

, mẽi
, mκ̃+

n
)
]}

+ . . .

with

A6 = −
√

2e

cos θW
Z

(K+3)i∗
L Z1l

N + Y K
l Z3l

N ZKi∗
L , (B.16a)

B6 =
e√

2 sin θ cos θW
ZKi∗

L
(
Z1l∗

N sin θ + Z2l∗
N cos θ

)
+Y K

l Z3l∗
N Z

(K+3)i∗
L , (B.16b)

C6 =
( −e√

2 sin θ cos θW
ZJj

D

(
1
3
Z1l

N sin θ − Z2l
N cos θ

)

+ Y J
d Z

(J+3)j
D Z3l

N

)
δMJ , (B.16c)

D6 =

(
−

√
2e

3 cos θW
Z

(J+3)j
D Z1l∗

N + Y J
d Z3l∗

N ZJj
D

)
δMJ ,

(B.16d)

E6 = −Y M
u ZIj∗

D Z2n
+ CIM , (B.16e)

F6 = −
(

e

sin θW
ZIj∗

D Z1n∗
− + Y I

d Z
(I+3)j
D Z2n∗

−

)
CIM ,

(B.16f)

G6 = −
(

e

sin θW
ZLi

L Z1n
− + Y L

l Z
(L+3)i
L Z2n

−

)
. (B.16g)

C Loop integrals

In this appendix we have summarized the definitions of
the loop integrals which were used in the calculation of
the Feynman diagrams in the previous appendix.
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Fig. 15. Box diagram with d̃ in the loop

C.1 Two-point functions

First we define the two-point functions as in [15] because
most three- and four-point functions will be expressed in
terms of these:

B0(q2, m1, m2) = ∆ −
∫ 1

0
dx lnH, (C.1)

B1(q2, m1, m2) = −1
2
∆ +

∫ 1

0
dx x lnH, (C.2)

B21(q2, m1, m2) =
1
3
∆ −

∫ 1

0
dx x2 lnH, (C.3)

B3(q2, m1, m2) = −B1(q2, m1, m2) − B21(q2, m1, m2)

=
1
6
∆ −

∫ 1

0
dx x(1 − x) lnH, (C.4)

with

H =
[
(1 − x)m2

1 + xm2
2 − x(1 − x)q2 − iε

]
, (C.5)

∆ =
1
ε

− γE + ln 4π, (C.6)

where γE = −d ln Γ (x)
dx

∣∣∣
x=1

= 0.577216 . . . denotes the Eu-
ler constant. Since the one-loop corrections to D are finite,
the terms ∝ ∆ cancel in the combinations of B-functions
that will appear below.

C.2 Three-point functions

Besides the standard integrals C0 and Cµν with vanishing
external momenta, we need the following integrals which
contain combinations of the Feynman parameters in the
nominator:
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CD1(0, 0, m1, m2, m3)

=
∫ 1

0
dx

∫ 1−x

0
dy

x + y

m2
1 (1 − x − y) + m2

2x + m2
3y

=
1

m2
3 − m2

2
(B0 (0, m2, m1) − B0 (0, m3, m1)

− B1 (0, m2, m1) + B1 (0, m3, m1)) , (C.7)
CD2(0, 0, m1, m2, m3) (C.8)

=
∫ 1

0
dx

∫ 1−x

0
dy

1 − x − y

m2
1 (1 − x − y) + m2

2x + m2
3y

=
1

m2
3 − m2

2
(B1 (0, m2, m1) − B1 (0, m3, m1)) ,

CD3(0, 0, m1, m2, m3)

=
∫ 1

0
dx

∫ 1−x

0
dy

(1 − x − y)2

m2
1 (1 − x − y) + m2

2x + m2
3y

=
1

m2
3 − m2

2
(B1 (0, m2, m1) − B1 (0, m3, m1)

− B3 (0, m2, m1) + B3 (0, m3, m1)) . (C.9)

C.3 Four-point functions

Here the standard integrals D0 and Dµν with vanishing
external momenta are needed. In addition the following
two integrals with Feynman parameters appear:

DD1(0, 0, 0, m1, m2, m3, m4)

=
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

× x

[m2
1 (1 − x − y − z) + m2

2x + m2
3y + m2

4z]2

=
1

m2
4 − m2

1

(
1

m2
3 − m2

4
(B1 (0, m3, m2) − B1 (0, m4, m2))

− 1
m2

3 − m2
1

(B1 (0, m3, m2) − B1 (0, m1, m2))
)

, (C.10)

DD2(0, 0, 0, m1, m2, m3, m4)

=
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

× x2

[m2
1 (1 − x − y − z) + m2

2x + m2
3y + m2

4z]2

=
1

m2
4 − m2

1

(
1

m2
3 − m2

4
(B1 (0, m3, m2) − B1 (0, m4, m2)

− B3 (0, m3, m2) + B3 (0, m4, m2))

− 1
m2

3 − m2
1

(B1 (0, m3, m2) − B1 (0, m1, m2)

− B3 (0, m3, m2) + B3 (0, m1, m2))) . (C.11)
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